


* Conventional working pairs

— Material compatibility issues
— Often require rectification

 Working pairs often not

suitable for high-temperature
heat pumping/transformation
* Novel working fluids like some

Boman et al. (2017)
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ionic liquids have very low
vapor pressures across wide
range of temperatures but

— Exhibit volatility and stability

issues
— Have poor thermal transport

properties




* |ssuesin compact component
design
— Flooding limits
— Wettability
— Phase mixing

e Surfactant-enhanced
components

— Improved wetting and interfacial
area

— Long-term stability still in question

* Heat/mass transfer modeling

— Extrapolated from large capacity
systems

— Difficult to fully predict
hydrodynamic instabilities,
component performance, and
overall system performance
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3a. Flow Distribution: Falling-Film Evaporation

Droplet Mode Droplet-Jet Mode Jet-Sheet Mode
Re =55 Re =220 Re = 385
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Box-Based Designs

Holes & Feeder Tube Holes, Feeder Tube, & Foam Exit Tubes Slot, Curved Plate

Holes, Adiabatic Tube Concentric: Holes, Slot Concentric: Holes, Half-Tube
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Al/ML could help with:

* Header design

* |dentification or
mitigation of flow
maldistribution




3d. Performance Degradation

Components often underperform due to flow maldistribution -

Pettersen (2004), Bobbili et al. (2006), Garimella et al. (2020), Pacio and Dorao

(2010), Zhang (2009), Keern et al. (2011), etc.
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Garimella et al. (2020)
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Motivation

* Develop simple, scalable control systems

Opportunities

* Use dimensionality reduction algorithms

on experimental data
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e Number of control variables can be
reduced to jUSt 2-3 parameters
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* High temperature heat pumping

— With increasing electrification,
less low-grade thermal energy is
available

— What role can absorption play in
decarbonizing industrial heat?

* Absorption heat pump thermal
storage

— Easily stores energy
intermittently

— Cannot easily store low-grade
heat

e Absorption heat transformer
thermal storage

— Can upgrade low-grade heat to
useful temperature

— Requires constant waste energy
source for charging and
discharging
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The ultimate solution: Just ask ChatGPT

There one was a fridge with no compressor
It used heat and a pair of fluids lesser
It absorbed the vapor

With no noise or labor
And kept the food cold with no pressure

S. Garimella Sustainable Thermal Systems Laboratory, GWW School of ME

12




	Slide 1: Absorption: Research Challenges, Needs, Opportunities, Outlook
	Slide 2: 1. Working Pairs
	Slide 3: 2. Compact Components
	Slide 4: 3a. Flow Distribution: Falling-Film Evaporation
	Slide 5: 3b. Fluid Distributors
	Slide 6: 3c. Headers and Maldistribution
	Slide 7: 3d. Performance Degradation
	Slide 8: 4. System Control and Optimization
	Slide 9: 5. Thermal Storage and Heat Pumping
	Slide 10: 6a. Additive Manufacturing, 3D Printing
	Slide 11: 6b. Pour in Raw Materials, Churn out Heat Pumps
	Slide 12: The ultimate solution: Just ask ChatGPT

